An Empirical Evaluation of Data-Driven Paraphrase Generation Techniques
نویسندگان
چکیده
Paraphrase generation is an important task that has received a great deal of interest recently. Proposed data-driven solutions to the problem have ranged from simple approaches that make minimal use of NLP tools to more complex approaches that rely on numerous language-dependent resources. Despite all of the attention, there have been very few direct empirical evaluations comparing the merits of the different approaches. This paper empirically examines the tradeoffs between simple and sophisticated paraphrase harvesting approaches to help shed light on their strengths and weaknesses. Our evaluation reveals that very simple approaches fare surprisingly well and have a number of distinct advantages, including strong precision, good coverage, and low redundancy.
منابع مشابه
Generating Phrasal and Sentential Paraphrases: A Survey of Data-Driven Methods
The task of paraphrasing is inherently familiar to speakers of all languages. Moreover, the task of automatically generating or extracting semantic equivalences for the various units of language— words, phrases, and sentences—is an important part of natural language processing (NLP) and is being increasingly employed to improve the performance of several NLP applications. In this article, we at...
متن کاملParaphrase Generation with Deep Reinforcement Learning
Automatic generation of paraphrases for a given sentence is an important yet challenging task in natural language processing (NLP), and plays a key role in a number of applications such as question answering, information retrieval and dialogue. In this paper we present a deep reinforcement learning approach to paraphrase generation. Specifically, we propose a new model for the task, which consi...
متن کاملAn Empirical Comparison of Distance Measures for Multivariate Time Series Clustering
Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...
متن کاملExtracting Paraphrases of Technical Terms from Noisy Parallel Software Corpora
In this paper, we study the problem of extracting technical paraphrases from a parallel software corpus, namely, a collection of duplicate bug reports. Paraphrase acquisition is a fundamental task in the emerging area of text mining for software engineering. Existing paraphrase extraction methods are not entirely suitable here due to the noisy nature of bug reports. We propose a number of techn...
متن کاملUsing Multiple Metrics in Automatically Building Turkish Paraphrase Corpus
Paraphrasing is expressing similar meanings with different words in different order. In this sense it is viewed as translation in the same language. It is an important issue in natural language processing for automatic machine translation, question answering, text summarization and language generation. Studies in paraphrasing can be classified as paraphrase extraction, paraphrase generation, pa...
متن کامل